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SUMMARY
Flow simulators assume that the transmissibility between two cells is proportional to their connection area.
We show that this assumption is incorrect for partially connected cells, and assess the significance of this
previously ignored error.

Faulted reservoir flow simulation models built using corner-point geometry contain partially connected
cells across faults. Partial connections are an inevitable consequence of miss-alignments of grid-cells
resulting from the fault displacement, and it is not possible to eliminate them without compromising either
the sedimentary layering or the across-fault juxtaposition geometry.  Across-fault cell connections vary in
shape from triangular to hexagonal, and have widely-varying fractional connection areas (the area of the
connection expressed as a fraction of the area of the cell face).

Using high-resolution flow simulation models of the volume between the centres of partially juxtaposed
grid-blocks, we examine systematically the magnitude of the transmissibility error. For two cells, the error
is greater when the fractional connection areas are smaller, and the kv:kh and cell length:height ratios are
larger. For a realistic cell aspect ratio of 60:1, kv:kh ratio of 0.1, and fractional connection area of 0.2,
tortuous flow within the cells results in a transmissibility that is about five times greater than the simulator
assumption. The errors decrease when fault rock is present between the cells, and when angular miss-
alignments between the cells are larger.

Analysis demonstrates that the transmissibility between partially juxtaposed cells is influenced not only by
the geometry and properties of the two cells in question, but also by the surrounding cells, and the error is
larger in more heterogeneous sequences.  Because of the complexity of the dependencies there is no
analytical solution. A wider recognition of the problem, combined with our analysis of its magnitude, may
aid a better appreciation of fault-related transmissibility uncertainties.
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1. Introduction

Most faulted full-field simulation models built in the last 20 years have used corner-point geometry 
(CPG) to define the reservoir structure. CPG was introduced to allow a greater flexibility than existed 
in the older, rectangular Cartesian grids, for the representation of geological attributes such as faults, 
pinch outs, and cross stratified beds (Ponting 1989, Ding and Lemonnier 1995, Peaceman 1996, 
Sammon 2000, SchlumbergerGeoquest 2005, Fanchi 2006). CPG is based on co-ordinate lines that 
define the edge of each vertical stack of cells, and the eight corner point depths of each cell are 
defined explicitly (Figure 1a). A reservoir model with grid dimension NX by NY by NZ therefore 
requires 2NX.2NY.2NZ corner points and (NX+1).(NY+1) non horizontal co-ordinate lines. Cells from 
adjacent cells stacks in a CPG model share two co-ordinate lines, and because the depths of the 
corners of each cell can be defined individually, individual cells can have multiple connections in a 
particular direction, with irregular connection interfaces (Figure 1b). This flexibility allows faulted 
models to be build which include realistic lateral variations in fault displacement over the length of a 
fault (e.g. Figure 2), resulting in individual cell-to-cell connections with between three and six corners 
and mutual overlap areas significantly smaller than the size of the cell face (Figure 2c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Corner Point Geometry cell structure. (a) One grid cell of a reservoir model defined in 
CPG.  After Sammon (2000). (b) Two grid cells with a partial connection area. 
 
Flows between cells in finite difference simulation models are calculated from a discretization of 
Darcy’s Law originally devised for orthogonal Cartesian grids. Several researchers have investigated 
the inaccuracy in the expression caused by angular departures from orthogonality, and have shown it 
to be relatively small for the modest angular distortions present in well-built CPG models (Aziz and 
Settari 1983, Mattax and Dalton 1990, Cordazzo et al. 2002, Fanchi 2006). Our work focuses on a 
different, unrelated error associated with the transmissibilities of partial connections produced by 
across faults in CPG models.  We show that the error, which to the best of our knowledge has not 
previously been discussed, is potentially significant, and becomes more so in more heterogeneous 
reservoirs with more permeable fault rocks. 
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Figure 2 A 3D full-field faulted reservoir model built with constant size cells (75m×75×4m) and 
faults with variable throws. (a) The cells. (b) Faulted cell-to-cell connections, coloured by 
transmissibility.  (c) Histogram of the area of faulted connections, expressed as a fraction of the area 
of a cell face (i.e. 75m×4m). After Manzocchi et al. (2008). 
 
Transmissibility defines the flow potentiality from the center of one cell to the center of another cell. 
Commercial simulators generally use a vectorial two point flux approximation (TPFA) to estimate the 
inter-block transmissibility due to its simplicity and to reduce the computational effort (e.g. Figure 3a; 
Aziz and Settari 1983, Goldthorpe and Chow 1985, Hegre et al. 1986, White and Horne 1997, 
SchlumbergerGeoquest 2005). For orthogonal cells (e.g. Figure 3b,c), the expression implies that 
transmissibility between two cells is directly proportional to the area of juxtaposition between them. 
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Figure 3 (a) Vectorial approach to the transmissibility between two cells. After Schlumberger 
Geoquest (2005). Simplified expression for the transmissibiltiy of (b) two and (c) three orthogonal 
cells.
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 While this proportionality, which follows directly from Darcy’s law, is clearly to be expected in the 
case of cells with 100% mutual juxtaposition (Figure 3b), it is unlikely to be accurate in the case 
multiple connections to cells with differing permeabilities (Figure 3c), since tortuous flow paths 
associated with preferential flow into the higher permeability cell will be underestimated by this 
expression. The purpose of this paper therefore is to document and quantify this error and to 
understand the sensitivities upon it. We do this by constructing high resolution flow models of two (or 
sometimes three) grid-blocks, and comparing the cell to cell transmissibilities back-calculated from 
these models, with the simplified TPFA transmissibility expression. 

2. The transmissibility of partially juxtaposed cells in two dimensions 

2.1 Modelling procedures 

The initial scenario we investigate is a simple 2D case, similar to the case investigated by Walsh et al. 
(1998), of two cells with identical properties and variable amounts of juxtaposition between them. A 
schematic cartoon of the simulation model used, which represents the area between the centers of the 
two cells, is shown in Figure 4a. These two cells are characteristic of the sizes used in conventional 
flow simulation models, with a length (L) of 75m and a height (H) of 1.25m; implying a horizontal to 
vertical aspect ratio of 60:1. The cell properties are identical and isotropic, with a k1 = k2 = 100mD, 
and kV/kH  = 1.0. 
 
A flow simulation model of the region between the two cell centers has been built using 250×1×125 
cells (for simplicity in Figure 4a and elsewhere in this paper, the model is shown with only 20×1×5 
cells, but the actual model used is much more refined). The juxtaposition area (AC) between the grid-
blocks varies systematically between 0.8% and 100% of the cell height, ensuring in each case that the 
small cells in the high resolution flow model have 100% juxtapositions across the fault (as they do in 
the simplified Figure 4a). Vertical injection and production wells located at the edges of the model are 
controlled by constant bottom hole pressure (BHP), and are perforated in each high resolution cell. All 
the single-phase flow simulation models are run until steady-state flow is achieved. The actual 
transmissibility of the coarse cell-center to cell-center region is then back-calculating from the 
observed flow rates in the high resolution model (Figure 4b), and in this case is much higher than 
would be expected from the simple proportionality between transmissibility and connection area that 
is generally assumed by flow simulators when the cells are partially juxtaposed (i.e. when 0%<AC < 
100%).  
 
The reason for the discrepancy between the actual transmissibility and the simulator approximation is 
that the approximation does not include the possibility of tortuous flow within the grid-blocks, and 
this flow imparts a significant overall increase in transmissibility. For example, Figure 5a shows 
schematically flow streamlines between two cells that are completely juxtaposed (AC  = 100%). In this 
case the streamlines are parallel to each other, perpendicular to the interface between the two cells, 
and equally spaced throughout the grid-block height. This is reasonable in this case as there are no 
asymmetries in the geometry of the model to perturb these streamlines. The cells in Figure 5b are the 
same length but half the height of those in Figure 5a. The juxtaposition area between the two cells is 
half as much, and it is sensible also to expect the transmissibility between these cells to be half the 
value of the transmissibility of those in Figure 5a, since two such pairs of cells on top of each other 
would be exactly equivalent to the situation shown in Figure 5a, but at a different resolution.  The 
problem comes with the case of partial juxtaposition shown in Figure 5c.  In this case the 
juxtaposition area between the two cells is the same as in Figure 5b, and the simulator assigns the 
same transmissibility to the connection. In terms of flow streamlines, however, this has the same 
effect as saying that no flow whatsoever is possible a forbidden area shaded in Figure 5c, as flow is 
restricted to the area perpendicular to the connection. The actual streamlines (Figure 5d) in the high 
resolution model exploit this forbidden area and, though restricted by the partial juxtaposition, 
nonetheless have much higher flow rates than would be expected from the simulator assumption 
(Figure 4b). 
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Figure 4 (a) Cartoon of the 2D high resolution flow model used in this study. Note that the actual 
model is much more refined. (b)  Actual transmissibility back-calculated from flow simulation results, 
compared to the simulator approximation to transmissibility, as a function of the cell juxtaposition 
area (AC). 
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Figure 5 Two cells (one yellow, one blue) and conceptual streamlines (red array) between cell 
centers (dashed red lines).  Cases (a) to (d) are discussed in the text. 

2.2 Effects of cell aspect ratio and permeability anisotropy 

The considerations above have rationalized the results in terms of the utilization of the asymmetrical 
model volume by streamlines. We take these considerations further to consider what the effect of 
partial juxtapositions would be, for models with different cell aspect ratios (Length: Height) and 
permeability anisotropy (kV:kH), assuming that Figure 6a shows the streamlines in a reference model. 
The shape of the streamlines is a reflection of the model geometry and content, and the greater the 
divergence of the streamlines from the simulator approximation (Figure 5c), the greater the under-
estimation of transmissibility. In the case of a lower kV:kH  ratio (Figure 6b), we expect the streamlines 
to exploit less of the forbidden area because the lower vertical permeability implies that the vertical 
deflection of the streamlines must occur over a wider distance from the connection. Therefore we 
expect models with lower kV:kH   to have lower transmissibilities for the same partial connection area. 
The end-member is to consider a case with kV = 0.0. In this case no vertical flow is possible and all 
streamlines must be entirely horizontal. In this case the simulator approximation (Figure 5c) must be 
correct, as the forbidden area in this case is truly forbidden and cannot be utilized.  
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 In Figure 6c, the kV:kH and juxtaposition area are assumed to be the same as Figure 6a, and therefore 
the streamlines are the same shape.  However, the aspect ratio of the cells in Figure 6c is greater. This 
increase in cell length for the same cell height has the effect of increasing the proportion of the 
forbidden area which contains streamlines, and therefore we expect this model to have a larger error 
in transmissibility relative to the simulator approximation.  
 
The expectations for these considerations are that the error in transmissibility is likely to be greater in 
models with a greater kV:kH ratio and a greater cell aspect ratio (L:H), and are borne out by the high 
resolution flow modelling (Figure 7a, b). If the true transmissibility obtained from the high resolution 
flow modelling is normalized by the simulator approximation that ignores tortuous flow, we obtain a 
ratio we term the Transmissibility Correction Factor (Figure 7c,d). This is the factor by which the 
simulator transmissibility must be corrected to account for the error, and can be considerable for 
realistic aspect ratios used in full-field flow models (L:H is typically in the range 20-100), given the 
preponderance of lower fractional juxtaposition areas present across faults in realistic faulted 
simulation models (Figure 2b). It is worth noting that the curves for the different aspect ratio cases 
(lavender to red lines) and kV:kH ratio cases (light yellow to black lines) have the same shape (Figure 
7c, d), indicating that the simple considerations and asymmetry and anisotropy used in Figure 6 are 
appropriate. 
 

(a) (c)(b)

 
Figure 6 (a) A datum set of streamlines between the centers of two cells, and the modifications to 
these as a function of (b) decreasing the vertical permeability, and (c) increasing the cell length. 

2.3 Effects of permeability heterogeneity 

The discussion above shows that a consideration of idealized streamlines can explain the effects that 
the cell aspect ratio (L:H) and permeability anisotropy ratio (kV:kH) have on the transmissibility of 
partially juxtaposed cells. In this section we extend these considerations to examine effects of 
differences in absolute permeability of the two cells, and the presence of low permeability fault rock 
between them. Throughout the discussion in this section we use models with a particular kV:kH ratio 
(0.1) and cell aspect ratio (L:H = 60). 
 
In a first set of models, the permeability of Cell 1 is kept constant (100mD) and the permeability of 
the Cell 2 is varied systematically in the range 1mD to 100mD (Figure 8a).  The cell-to-cell 
transmissibility depends on the harmonic average permeability of the two cells (Figure 3), and this 
change in k2 changes both the simulator approximation, as well as the observed transmissibility, 
between the cells. However, when we calculate the normalized fractional transmissibility (TN: the 
transmissibility observed in the partially juxtaposed high resolution flow model normalized by the 
transmissibility that would be present between the same two cells in the case of 100% juxtaposition), 
we find that all cases have exactly the same curves of TN vs. AC (which is shown for the k1 = k2 = 
100mD case by the red curves in Figure 7a which is identical to the red curve labelled Tmult = 1.0 in 
Figure 8a).  In other words, the difference in permeability between the two cells does not change the 
transmissibility error in the simulator approximation compared to the high resolution flow model. We 
interpret this result to be because absolute permeability does not change the shapes of the pressure 
distributions within the grid-cells, but merely the relative magnitude of pressure drop within each.  
Therefore both cells, irrespective of their differences in permeability, have the same fractional 
transmissibility error which is a function of the geometry and anisotropy of permeability field but not 
the actual permeability magnitude.  Hence when the cells are combined, the TN value is identical 
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 irrespective of the precise values of k1 and k2, so long as the geometry (L:H and AC) and anisotropy 
(kV:kH) of cells are the same. 
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Figure 7 Transmissibility as a function of cell juxtaposition area for cases with (a) different kV:kH
ratio and (b) different cell aspect ratio. (c, d) Transmissibility correction factor (i.e. the 
transmissibility derived from the numerical results normalized by the simulator approximation) for 
the kV:kH cases  (light yellow to black) and the cell aspect ratio cases (lavender to red).
 
In a second set of models we examine the influence of a specific thickness of low permeability fault 
rock between the two partially juxtaposed cells. Fault rock can be included in these models in two 
ways: firstly be explicitly defining the properties of cells between the grid-blocks (Figure 8b), and 
secondly by assigning transmissibility multipliers to the across-fault connections in the high 
resolution models (Figure 8a). The appropriate value of the multiplier can be determined from the 
following expression (Manzocchi et al. 1999): 
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 Where tf and kf are the fault rock thickness and permeability, and lengths LA and LB refer, in this case, 
to the size of the fine-scale model cells. We have applied both methods in this study and have 
obtained identical results with both. 
 
We find that irrespective of k1 and k2, models with the same transmissibility multiplier at the scale of 
the large grid-blocks (i.e. with the same value of Tmult calculated in Equation 1 using the LA =  LB = L) 
have the same curve of TN vs. AC (Figure 8c). The curve with the greatest divergence from the 
simulator approximation of TN occurs when Tmult  = 1, and the error is less than a factor of 2 even for 
very low AC, provided Tmult < 0.5 (Figure 8d). We conclude that because of the model geometry, the 
streamlines through the fault rock are perpendicular to the cell face even when AC is low, and 
therefore the simulator assumption is correct for the portion of flow through the fault rock. In a model 
with a more restrictive fault (i.e. a model with a lower Tmult value), relatively more of the pressure 
drop occurs within the fault rock, and relatively less within the grid-cells, and therefore the error in 
the simulator approximation of transmissibility is lower. 
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Figure 8 Fault rock properties can be attached to the models either as transmissibility multipliers on
the fine model grid (a) or discretely as low permeability cells (b).  (c) Transmissibility as a function of 
cell juxtaposition area for cases with different permeabilities in the two cells as well as different fault
rock properties.  In each case, models with different large-scale transmissibility multipliers have 
identical curves. (d) Ditto, but shown the transmissibility correction factor. 
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 3. Three-dimensional effects 

In Figures 7 and 8 we have examined the transmissibility of two partially connected grid-cells as a 
function of cell aspect ratio (L:H), anisotropy (kV:kH) and heterogeneity (k1, k2, kf), in two 
dimensional models. An aspect of full-field faulted models is that fault displacement gradients can 
cause angular misalignments between grid cells, as shown in Figure 2. Hence the effects of partial 
juxtapositions should ideally be considered in a 3D, rather than 2D context. Figure 9a,b shows how a 
constant 10% partial juxtaposition area can differ spatially as a function of cell misalignment in 3D. 
Displacement gradients on normal faults at the scale of flow simulation models are generally less than 
about 10°. 
 
It is difficult to build high resolution 3D models with entirely overlapping fine-scale cells for the 
geometries shown in Figure 9a, therefore the flow models built to examine this effect have a constant 
cell geometry with 100% cell overlap (Figure 9c), and the effect of the irregular juxtaposition area is 
included by allowing flow through only the selection of connections shown in red in the 4 cases in 
Figure 9d. The reason for this modelling scheme is partly because it is much simpler to build, and 
partly because it ensures that there are no partial connections in the high resolution model.  In the 
absence of gravitational effects, the scheme preserves the asymmetry of flow in the two cells, and 
therefore the results should be reasonably accurate. 
 

(a)

(c) (d)

(b)

 
 

Figure 9 3D considerations.  (a) Two cells separated by a fault with different angular misalignments 
between the cells. (b)  Juxtaposition plots for the three cases in (a) with the partial connections shown 
in red. (c)  Outline of a 3D high resolution grid used to assess the significant of angular 
misalignments. (d) Cartoon of the contact area of the two cells shown in (c), with active connection in 
red and inactive ones in grey, representing cases with different angular misalignment. 
 
We have calculated the transmissibility of 3D models at different angular misalignments and different 
kV:kH ratios for a system with constant cell aspect ratio (L:H = 60) a partial juxtaposition area (AC = 
2%) and no fault rock (Tmult = 1.0)  In the 2D case with these properties the transmissibility correction 
factors required to transform the simulator approximate transmissibility to the observed value are high 
– for example a factor of 43 is required when kV:kH = 1.0 and 26 when kV:kH = 0.01. The 3D results 
are quite complex (Figure 10), as they balance two competing trends. The end-member trends are 
illustrated by the curves at kV:kH = 0.0 and 1.0. In the case of kV:kH =0.0, no flow perpendicular to the 
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 top or base of the cell is possible, and, as we discussed above, the simulator approximation is accurate 
in the 2D case (Figure 7a). Angular misalignments in the grid cells, however, mean that areas of cell-
to-cell juxtaposition become available for lateral flow, hence horizontal deflections to the streamlines 
allow increases in transmissibility relative to the simulator approximation. Therefore the 
transmissibility correction factor increases from 1.0 as the dip angle increases (Figure 10). In the case 
where kV:kH =1.0, it is just as easy to flow vertically as horizontally and therefore this effect is 
irrelevant. Instead, the transmissibility decreases as the dip angle increases, because the area of cell-
to-cell juxtaposition become progressively more clustered in the corner of the cell face, and therefore 
an average streamline need to be longer to achieve the same flow. Intermediate kV:kH cases show 
elements of both these trends (for example a transmissibility minimum is evident at about 5° dip angle 
when kV:kH = 0.001, Figure 10), but in general it is evident that the extreme transmissibility correction 
factors present at high kV:kH ratio in the 2D case (Figure 7) are reduced significantly by even a few 
degrees of angular misalignment between the cells. 
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Figure 10 Transmissibility correction factor for cases with different angular misalignment and kV:kH
ratio for cells with a constant aspect ratio (L:H = 60) and juxtaposition area (AC = 2%). 

4. Discussion 

In his initial formulation of corner-point grids, Ponting (1989) discussed transmissibilities associated 
with partial connections, and drew a Figure similar to Figure 11 to consider what the transmissibility 
of partial connections should be. Ponting (1989) reasoned logically that the total transmissibility 
between the two sets of cell-stacks shown in Figure 11 should be identical even though one has partial 
juxtapositions and one does not, and that this must be achieved using a transmissibility formulation in 
which the cell to cell transmissibility is proportional to the juxtaposition area. This reasoning is 
correct, yet our flow simulation models, which include a single pair of cells from the stack shown in 
Figure 11b, indicates that the assumption that transmissibility is proportional to contact area is 
incorrect and too restrictive to flow.  
 
These contrasting views can be reconciled be considering vertical heterogeneity of cell properties. In 
Ponting’s (1989) considerations, the two stacks of cells (Figure 11a, b) can only be equivalent if the 
properties of the cells in each stack are identical, i.e. if there is no vertical heterogeneity. If the cells 
labelled 2 and 3 in Figure 11b, for example, have different properties to each other, then there can no 
longer be any equivalence between Figure 11a and 11b, as the spatial arrangements of the 
permeability fields must be different. Therefore there is no longer any reason to expect the total 
transmissibility between the two stacks to be the same.  Hence our models, which take an extreme 
case of vertical heterogeneity in which only cells 1 and 2 (Figure 11b) are active, is fundamentally 
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 different to Ponting’s (1989), and therefore there is no contradiction in his conclusions and our model 
results. 
 
To illustrate this point, we have built a high resolution 2D flow model of a portion of Figure 11b. The 
model (Figure 12a) consists of cell 1 and a portion of cells 2 and 3, and has constant permeability 
(100mD) in cells 1 and 2, with a range of permeabilities between 0 to 100mD in cell 3. 
Transmissibilities from cell 1 to cell 2 and cell 1 to cell 3 back-calculated from a high resolution 
models (which includes a vertical no-flow restraint between cells 2 and 3) are compared to the 
simulator approximation in Figure 12b and c, while Figure 12d shows the correction factor for total 
transmissibility across the model.  In the case where k3/k2 = 1.0, there is no vertical heterogeneity in 
the model and the simulator and high resolution transmissibilities are identical. This is equivalent to 
the case discussed by Ponting (1989).  In the case where k3/k2 = 0.0, cell 3 is inactive, and the 
geometry of the model is similar to the case we have been discussing in this paper.  We find that the 
simulator approximation underestimates the transmissibility into the higher permeability cell (Figure 
12b), but overestimates it into the lower permeability one (Figure 12c). Overall, however the total 
transmissibility is underestimated (Figure 12d). Significantly, we observe that the transmissibility 
between cells 1 and 2 varies as a function of the properties of cell 3 even though the geometry and 
properties of cells 1 and 2 are identical in all cases.  This result demonstrates, therefore, that an 
accurate two-point flux approximation solution to the transmissibility between two partially 
juxtaposed cells is impossible, as the transmissibility depends on the properties of the surrounding 
ones. The issue of accurately determining the transmissibility between partially juxtaposed cells, 
therefore, requires a solution based on multi point flux approximation (MPFA). Many researchers 
have discussed transmissibility solutions associated with non-orthogonality and unstructured grids 
based on MPFA (Aavatsmark et al. 2001, Aavatsmark 2002, Chen et al. 2007, Potsepaev et al. 2009), 
but the issue of partial connections in orthogonal corner-point grids has, to our knowledge, not 
previously been highlighted. 
 
In addition to highlighting the error, our aim has been to gain some appreciation of the magnitude of 
the error in transmissibility of partially connected cells when it is assumed to be proportional to their 
contact area.  We have seen that the error is larger across smaller connections (low AC), between cells 
with higher aspect ratios (L:H), and higher cell anisotropy (kV:kH). Our initial 2D models (Figure 7) 
suggested that the effect could be severe, with frequent underestimates of transmissibility by a factor 
of 10 or more, in realistic faulted reservoir models. Subsequent models, however, have shown that the 
effect is reduced with fault rock properties are included (Figure 8), when connections are considered 
in 3D rather than 2D (Figure 10) and in less vertically heterogeneous sequences (Figure 12).   
 
The contribution of fault rock properties at attenuating the error is particularly significant. In many 
cases fault rocks between good quality grid-block can result in very low multipliers (Manzocchi et al. 
1999), and in this case the error is virtually non-existent (Figure 8d).  Our results suggest than even 
relatively permissive fault rocks, which can result in a transmissibility multiplier as high as 0.5, can 
reduce the error by several orders of magnitude, with a maximum error (at the particular L:H and 
kV:kH ratios we have considered) of a factor of 2.  Hence we conclude that the error is not particularly 
significant for across-fault connections if they are modelled with realistic fault rocks, but may be 
significant if partial connections are built into model as a means of representing geometrical 
complexities in the sedimentological architecture of a reservoir, as such connections would not be 
associated with a low permeability membrane.  
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Figure 11 Two stacks of cells with complete (a) and partial (b) connections.  Cells 1, 2 and 3 are 
referred to in the text.
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Figure 12 (a) Cartoon of a 2D model of portions of cells 1, 2 and 3 (Figure 11).  Transmissibility 
correction factors as a function of the ratio between the permeability of cells 3 and 2, for (b) the 
connection between cells 1 and 2, (c) the connection between cells 1 and 3, and (d) total 
transmissibility. The green line is the simulator approximation and the patterned line is the actual 
value as determined from the high-resolution flow simulation model. 
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 5. Conclusions 

High resolution flow simulation modelling has shown that the transmissibility expression generally 
used for partially connected cells is incorrect.  The error is largest for: 
 
• Smaller juxtaposition areas. 
• Connections between cells with higher kV:kH ratios.  
• Connections between cells with higher aspect ratios.  
• More heterogeneous sequences.  
• Connections containing more permissive fault rocks. 
• Connections between cells with lower angular misalignments. 
 
Overall, we do not think that the error is particularly significant for faulted reservoir models built 
using corner-point grids, as it is very effectively reduced (but not entirely eliminated) by realistic fault 
transmissibility multipliers.  Nonetheless, a wider appreciation of this error, which has no analytical 
solution, would be useful when addressing fault-related transmissibility uncertainties. 
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