Contrasting origins of breached relay zone geometries



Conneally, J., Childs, C. & Walsh, J.J.

Abstract - Relay zones accommodate transfer of displacement between pairs of adjacent segments of a fault array that become linked to form a through-going fault as displacement increases. 3D geometric and kinematic analysis of two vertically aligned relay zones, that form a complex boundary between two fault segments, generally support this model of relay zone growth but they also highlight some departures from this scheme. The two seismically mapped relay zones, although separated vertically by 100 m, were synchronously active over most of their development history. A causal relationship between them is proposed with the geometric complexity arising from the formation of the lower relay zone triggering the formation of the upper. The lower relay zone is now breached but originally formed a hole within the fault surface up to throws of ca. 50 m. The upper relay zone displays both breached and intact relay zone geometries at different structural levels demonstrating that relay zone breaching is a protracted rather than geologically instantaneous process. Geometrically the lower part of this structure resembles a breached relay zone, but it formed by propagation of a splay fault from a pre-existing bend to enclose an intervening and steepening ramp, a growth scheme which is the opposite of conventional relay zone models.


Journal of Structural Geology, 58, 59-68, 2014.