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ABSTRACT: A parallel genetic algorithm has been applied successfully to design a
production plan that is substantially superior to that obtained using a conventional
engineering approach. The reservoir, a dipping structure, was expected to yield
optimum production using a rolling line drive from downdip to updip positions. The
simulation allowed for 3800 positions for each of 11 wells, giving a total of
1.3�1031 options. The genetic algorithm sampled 1650 of these and was able to
identify seven solutions that would increase production by over 30% compared with
the rolling line drive. In contrast, a random search using 850 samples managed to
find only two plans that improved production; in each of these cases the
improvement was less than 1%.
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INTRODUCTION

The optimization of a production plan can make a major
difference to the economic viability of a petroleum reservoir.
Reservoir management (Thakur 1996) is the process of choos-
ing an optimal development plan for a reservoir, which adds
maximum value to a company’s portfolio. The process of
finding the optimum development plan is rarely formalized. A
few well positions are chosen on the basis of standard reservoir
engineering rules governing areal and vertical sweep (Craig
1971), and then a simulator is used to refine these positions.
This process is acceptable only if the simulation model is an
accurate representation of the reservoir. Since this cannot be
guaranteed, the reservoir engineer will often choose final well
positions for the development plan which are not those
recommended by the simulations.

Operational research methodologies can be used to improve
this process. There are two areas that need to be addressed:
formulating efficient methodologies to define an objective
function that captures the risks and opportunities of a proposed
development plan, and search algorithms that can efficiently
identify development plans that will be optimal using the
appropriate objective function.

This paper describes a robust and flexible optimizer that can
tackle the difficult optimization problem of development plan
selection. Its application is illustrated on a realistic test problem,
of a reservoir containing 60 830�103 m3 of oil modelled with
78 720 active grid-blocks in a black oil simulator. The proper-
ties of the resulting development plan are discussed. The test
reservoir is drawn from the SAIGUP suite of faulted shallow-
marine reservoirs (Manzocchi et al. 2008a). The next section
describes the general problem and the specific test problem that
the study attempts to solve. This is followed by a detailed
description of the genetic algorithm used. Finally, the article
considers the effectiveness of the optimization process and the
value of the best development plan proposed during the
optimization.

OPTIMIZATION OF RESERVOIR PRODUCTION

PLANS

Before applying a formal optimization method to the problem
of identifying an optimal development plan, four elements have
to be considered.

+ The parameters: these are all the variables within the
development plan that can be adjusted, and which are to be
considered as part of the problem. Depending on the
situation these might include: the number, type and location
of wells; the pressures and rates at which wells operate; and
the timing of events, such as the drilling schedule.

+ The model: the role of the model is to take a development
plan as specified by particular values of the variables and
return a set of numbers that can be used to evaluate the
objective function. The model must be able to resolve any
conflicts that exist with the specified development plan; it
should also handle any uncertainties. This may mean that the
model has stochastic elements, and may consist of several
sub-models. If the development plan is unfeasible, then the
model should return a dummy set of numbers that can still
be evaluated by the objective function.

+ The objective function: the objective function will take all
of the information generated by the model and turn it into a
single number. This number can then be compared with the
equivalent number produced by a different set of variable
values, and the best set of variables selected. If there are
many conflicting objectives it may be difficult to produce a
single measure of optimality (Deb 2001).

+ The optimizer: a number of issues need to be considered
when making the choice of optimizer. Does the optimiza-
tion algorithm require gradients and does the model provide
them? How easy is it to use the algorithm and get it to
work effectively? Is the algorithm efficient and does it
produce one ‘best’ answer or a suite of answers? Can it
handle noise, and uncertainty, in the objective function? Is
it robust to problems within the model? Can it handle
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multi-modal problems? Can it be parallelized easily, if
required?

There have been a number of previous attempts at applying
formal optimization methods to well placement problems
(Aanonsen et al. 1995; Beckner & Song 1995; Bittencourt &
Horne 1997; Centilmen et al. 1999; Guyaguler & Gumrah 1999;
Guyaguler et al. 2002; Pan & Horne 1998; Rogers & Dowla
1994). The general aim of most of these previous attempts has
been to reduce the computing effort needed. Various tech-
niques have been tried with this as the objective: reducing the
scope of the problem; using simpler models; reduced physics
simulators; or proxy methods. The effect of these methods is
either to reduce the quality of the resulting function evalua-
tions, and/or to complicate the process. Guyaguler et al. (2002)
demonstrated the complexity of the well placement problem.
They showed, using exhaustive search, that for a single well
placement problem the response surface is very noisy, with at
least 20 local optima surrounding the global optima. Gradient-
based methods are sure to fail on this problem.

THE TEST PROBLEM

The SAIGUP project (Manzocchi et al. 2008a) involved the
creation of 400 sedimentological models, which, when faulted
in different ways, generated approximately 12 000 synthetic
clastic reservoirs (Howell et al. 2008; Manzocchi et al. 2008b).
Reservoir production from these models was then simulated
using a range of development plans (Matthews et al. 2008).
Figure 1 shows the production when a particular development
plan is applied to nine sedimentological models, each in an
unfaulted state and faulted by nine separate fault systems, each
characterized by nine different fault-rock permeability models.
The nine selected sedimentologies were chosen to be represen-
tative of the full set of models and are illustrated in Manzocchi
et al. (2008a). A typical original oil-in-place is about
60 000�103 m3, with the production representing a recovery
factor of 30–60%. In many cases the production is quite
reasonable. However, about 5% of the reservoirs have poor
production, and the cause appears to be poor fault transmissi-
bility combined with compartmentalizing fault systems (Man-
zocchi et al. 2008a, b).

The aim of the test problem was to design a development
plan for one of the poor producing reservoirs identified in
Figure 1. The reservoir chosen produced 17 415�103 m3 over
the thirty-year production life studied, using the standard de-
velopment plan from within the SAIGUP project (Manzocchi
et al. 2008a). This amount of oil production is represented by
the horizontal line in Figure 1. The variables for the test
problem were the x and y locations of each of the eight

producers and three injectors used in the original development
plan. Given that the reservoir had poor fault transmissibility,
one could have used horizontal wells to improve production.
However, in order to compare the results directly with other
cases within the SAIGUP project, it was decided to use only
vertical wells completed over the full height of the reservoir. In
a future study these constraints could be relaxed.

In total there were 22 variables, with each well capable of
being placed at any one of 3800 locations. This gives approxi-
mately 1.3�1031 different development plans to choose from.
The objective function was to maximize the total oil production
at the end of thirty years. In a real study one would expect the
objective function to be based on an economic evaluation of
the proposed development plan. The reservoir model grid was
of size (40�120�20) 96 000 grid-blocks, of which 78 720
were active grid-blocks. The production was simulated using
the MORE simulator (Young & Hemanth-Kumar 1991),
supplied to the SAIGUP project by Roxar Ltd.

GENETIC ALGORITHM

The structure of a basic serial genetic algorithm (GA) is shown
in Figure 2. The starting point of the algorithm is the generation
of a sequence of possible solutions to the problem. Each
solution is known as an individual, with all of the individuals
forming a population. These individuals are solutions to the
problem only in the sense that they represent a way of placing
the wells into the reservoir. They are not expected to be optimal
and they are usually generated randomly. For each of the
individuals the objective function is then evaluated; for this
problem the objective function was the total oil produced after
thirty years. The individuals can now be put into the adult
population. This is then followed by the breeding of new
individuals by using selection, crossover and mutation. These
new individuals have their objective functions evaluated and
may then enter the adult population. This process repeats itself
until the optimization is stopped. Each of the steps can be done
in more than one way. For a more detailed introduction to the
genetic algorithm method, the reader is referred to one of the
many introductory texts, such as Carter (2003) or Mitchell
(1998).

Fig. 1. The distribution of the total oil production from each of 738
sample reservoirs models.

Fig. 2. The general structure of a basic genetic algorithm.
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In Figure 2 there are two queues, the training queue and the
initiation queue, which are not normally mentioned in introduc-
tions to the GA methodology. The training queue is the list of
individuals that have been generated but have not yet had their
objective function evaluated. The initiation queue is the list of
individuals, and their objection function value, that have not yet
been placed into the adult population. These queues have been
named after the cultural idea that children should undergo a
period of training before they take part in an initiation
ceremony allowing them to become part of the adult popu-
lation. The size that the queues are allowed to reach depends on
the exact implementation of the GA. In a generational replace-
ment scheme, both queues have a maximum size equal to the
population size. In a steady-state scheme the queue sizes are
both one.

Figure 3 shows how the serial GA scheme is adapted for our
multi-processor implementation. The main change is that
where, in Figure 2, there was a single control loop, in Figure 3
this has become three separate control loops that communicate
via the two queues. The first control loop generates individuals
whenever the training queue becomes empty and places them in
the training queue. The second control loop takes individuals
from the training queue, evaluates their objective functions and
places the result in the initiation queue. The final control loop
takes individuals from the initiation queue and places them into
the adult population. No detailed analysis to determine the
optimal lengths for the two queues has been carried out. Based
on previous experience the length of the training queue, M, was
set to five and the length of the initiation queue, N, to three.

The reason for this set up is the variability in the time
required to evaluate the objective function for an individual.
Each evaluation of the objective function for an individual
requires a complex simulation of a reservoir. The time required
for this varied between two minutes and forty hours. The
average was four hours, with 80% taking between two hours
and ten hours. If one was to use the structure of a serial GA, as
shown in Figure 2, but evaluate the objective functions in

parallel, it is likely that significant amounts of computer time
would be wasted whilst waiting for a few simulations to finish.

The details of how individuals are generated from the adult
population and how they are initiated into the adult population
are exactly the same as for a serial GA. A number of schemes
were used and all those selected for this work are very simple.
The performance of the whole algorithm could be expected to
improve if other choices were made (this is the subject of
ongoing research). For a review of possible schemes for real
variable GAs, see Ballester & Carter (2003).

Selection scheme

A two-person tournament (Goldberg & Deb 1991) has been
used to select each parent from an adult population of 25
individuals. To select a parent, first choose randomly two
different individuals from the parent/adult population. These
two individuals then compete for the right to be a parent, with
the fitter individual, i.e. the individual with the better objective
function, always winning. Parents return to the pool of poten-
tial parents before the next selection process is started.

Crossover operators

The chromosome, i.e. the list of variables, used is a vector of
real numbers. Two crossover operators were used to generate
children, with a 50% probability of selection for each. The first
was a simple two-point crossover, as illustrated in Figure 4, with
the crossover points being chosen at random. The second was
the SBX operator (Deb & Agrawal 1995; Deb & Bayer 1999),
which operates on a gene-by-gene basis, a gene being a single
variable in this problem; the genes of an offspring are biased
towards those of one of its parents. It has one user-defined
parameter that controls just how closely related to its parent is
the offspring. The values of the offspring variables y i

�1� and y i
�2�

are given by

y
i
�1� = 0.5��1 + �q�x i

�1� + �1 � �q�x i
�2�� (1)

y
i
�2� = 0.5��1 � �q�x i

�1� + �1 + �q�x i
�2�� (2)

where �q is given by

�q = 5�2u�
1

� + 1 0.0<u#0.5

� 1
2�1 � u� �

1
� + 1 0.5<u<1.0

(3)

and u is a random number with u[�0,1� , � is a non-negative
real number set by the user (1.0 in this work) and x i

�1� and x i
�2�

are the variables from the parents.

Fig. 3. The general structure of the parallel genetic algorithm from
this study.

Fig. 4. Example of a two-point crossover acting on the chromosome
of two parents to produce a single child.
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Mutation scheme

Because the SBX operator naturally introduces some variation
at the level of individual genes (vector components), it was not
thought necessary to have an explicit mutation operator.

Initiation/culling scheme

A child is transferred from the initiation queue to the adult
population using random replacement. One of the current
adults is randomly selected, without reference to its fitness, and
replaced by the incoming child. This has the advantage that the
adult population does not become dominated by the descend-
ants of a single individual and a high level of diversity is
maintained. The disadvantage is that a high quality individual
can disappear from the adult population, before that individual
has influenced the population.

THE RESULTS

The results will be considered in two ways: first, the perform-
ance of the GA as an optimizer will be scrutinized; secondly,
the performance of the proposed development plan will be
considered from a reservoir engineering viewpoint.

Optimization performance

Figure 5 shows the objective function versus the number of
simulations (individuals) evaluated. In total 2500 development
plans were tested, which took approximately 19 days using a
cluster of 24 SUN Ultra 5 workstations. The first 850 cases
used a simple random search to give a baseline against which to
judge the GA. The range of productions is (0, 17 560�103) m3,
with a mean of 8582�103 m3. The next 1650 cases were
generated using the GA described; the range of productions is
(2350�103, 24 276�103) m3, with a mean of 16 038�103 m3.
The final population of 25 individuals has a range of
(16 368�103, 20 859�103) m3, with a mean of 19 314�
103 m3. The best three cases were: case 2088 with value
24 276�103 m3, case 1312 with value 24 177�103 m3 and case
1276 with value 23 964�103 m3.

From these results one can see that the GA is successfully
searching and doing better than the random search. The
base-case development plan, designed by hand, has a produc-
tion of 17 415�103 m3. During the random search this was
bettered on only two occasions, while the GA produced seven
development plans that improved the production by more than
30%. It is not possible to draw any stronger conclusions about
the performance of the GA. Due to its stochastic elements one

should run multiple examples to test its performance. Also one
should use a better optimization algorithm than random search
for the comparison.

Reservoir engineering performance

Figure 6a shows the position of the wells in the original,
hand-designed, development plan for the structure/fault pat-
tern of the test reservoir (Plan-1). There is a line of crestal
producers, another line of mid-structure producers and three
edge injectors. Figure 6b shows the wells in the optimized
development plan (Plan-2). Some wells have unusual positions:
the injector I02 is at the crest of the reservoir, the producer
PC2 has been placed in the water zone, the producer PC1 is
only just in the oil leg, and the injector I01 is very close to the
producer PM1. There are a number of important faults: one
separates I01 from PM1, another separates I02 from the
producers PM2, PC4 and PM3. Finally, Figure 6c shows the
optimal plan but with I02 and PC1 swapped around, putting a
producer back at the crest and an injector back at the oil–water
contact (Plan-3).

The results of applying these three plans to the test reservoir
are shown in Figure 7. The optimized development plan
(Plan-2) produces 37% more oil than the base case (Plan-1).
The revised plan (Plan-3) does noticeably less well than the
optimized plan. It is concluded that the unusual positioning of
an injector at the crest is quite important. This raises the
question as to what is happening in this region of the reservoir.
There are two particular elements of the optimized plan that
need noting.

+ The water from injector I02 is generally pushing oil along
the geological layers down towards the producer PC1. A
little water is crossing the fault that separates I02 from
PM2, PC4 and PM3, and it provides pressure support to
producers PM2 and PC4.

Fig. 5. Production achieved in 2500 simulations by the two
optimizers. The solid line is the value achieved by the hand-designed
solution (Plan-1). The first 850 cases were generated randomly; the
last 1650 cases were generated by the genetic algorithm.

Fig. 6. Well positions for three development plans: (a) Plan-1, (b)
Plan-2 and (c) Plan-3.
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+ The water from I01 is driving oil towards producers PC3
and PM2, with little water crossing the fault towards
producers PM1 and PM4.

From this analysis of the waterflood, one can see that the
optimizer has managed to find a production plan that exploits
particular features of the test reservoir.

An obvious question is whether Plan-2 has any value beyond
this particular reservoir model. There are three possibilities to
consider: Plan-2 may be exploiting some feature of the sedi-
mentology which means that production from any of the
reservoirs based on the same sedimentology could be im-
proved; Plan-2 is exploiting some feature of the structure/fault
pattern, again offering the possibility of improving the produc-
tion across a range of reservoirs; finally, there is the possibility
that Plan-2 works only for this reservoir and has no utility for
other reservoirs.

Figure 8 compares the production, using Plan-1 and Plan-2,
from the 82 reservoirs in the original sample that are based on
the same sedimentology as in the test problem. The reservoirs
cover a range of structures/fault patterns and fault properties,
including an unfaulted version. The hand-designed develop-
ment plan (Plan-1) was not necessarily planned to work with
the structure used. The optimized development plan (Plan-2)
was planned exclusively on the test reservoir. In most cases
Plan-2 does significantly worse than Plan-1; only in six cases is
there an improvement. It is concluded that Plan-2 is not
exploiting a feature of the sedimentology.

Figure 9 compares the production, using Plan-1 and Plan-2,
from the 243 reservoirs that use the same structure/fault
pattern (nine different sedimentologies are used) but differ-
ent fault properties (i.e. permeability and strain levels; see

Manzocchi et al. 2008a). In the majority of cases Plan-2
produces a worse result. However, in 31 cases there is an
improvement in the production, with most of these being in the
bottom 20% of performers using Plan-1.

Finally, the result of using Plan-2 was compared against the
appropriate hand-designed development plan on all 738 reser-
voirs. These reservoirs use nine different sedimentologies, four
patterns of faults and many fault properties. The results are
shown in Figure 10; the only reservoirs to show an improve-
ment are the 31 that were identified in Figure 9. In all cases the
faults are slightly leaky, with the production improved by up to
40% by using Plan-2.

It is observed that the optimized development plan works
for a range of reservoirs with the same structure/fault pattern
as in the test case and slightly leaky faults. If the faults are too
open then water can flood through, this has the effect of killing
producers PM2 and PC4 and less oil is produced by the end of
the predefined production period (30 years). If the fault is
totally sealing, then no water crosses the barrier and the
pressure in the crestal region around the producers drops,
which causes a reduction in well productivity. The effectiveness
of the development plan appears not to depend on the
sedimentology, with eight of the nine sedimentologies used
appearing in the list of improved reservoirs. If an economic
measure of the value of the optimized plan had been used, the
situation may have looked even better. This is because the
optimized plan uses one production well less that the original
plan, which represents a significant financial saving.

In conclusion, the optimized plan is robust to uncertainties
in the sedimentology and uncertainties in the fault properties,
provided that the faults can be described as slightly leaky. The
plan is not robust to significant changes in the pattern of
faulting.

Fig. 7. Total oil production against time for the three tested
development plans.

Fig. 8. A comparison of the total oil production obtained using
Plan-1 and Plan-2 for the 82 reservoirs that had the same sediment-
ology as the test problem, but with different structural/fault patterns
and fault properties.

Fig. 9. A comparison of the total oil production obtained using
Plan-1 and Plan-2 for the 243 reservoirs that had the same
structural/fault patterns as the test problem, but with different
sedimentology and fault properties.

Fig. 10. A comparison of the total oil production obtained using
either Plan-2 or the hand-tailored development plan that was tuned
to the structural/fault patterns for each of the 738 sample reservoirs.
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CONCLUSIONS AND DISCUSSION

This paper has shown that it is both possible, and feasible, to
use a computer-based optimization method to plan the posi-
tions of all of the wells needed to produce economically from
a reservoir, without the need to resort to using either reduced
models or proxy models. It has been demonstrated that one can
use a GA adapted to use a multi-processor system, and that it
produces better results than a random search. The total number
of solutions that were possible for the problem considered is
approximately 1.3�1031; the GA evaluated just 1650 solutions.
The GA was run just once and no other optimization algorithm
was tested, so it cannot be claimed that this is the best way of
carrying out this type of optimization. However, the choice of
the algorithm was guided by previous research (Ballester &
Carter 2003).

The objective of the optimization was to maximize the total
oil produced over a thirty-year period for a particular reservoir.
This objective was chosen so as to be easy to extract from the
simulation results. There is no reason to believe that the
method would not work for an economics-based measure of
success. The plan that was obtained was successful in that the
production was increased by 37% over the thirty years. It had
an unusual feature, with an injection well being placed at the
crest of the reservoir. Analysis of the behaviour of the
development plan, over a range of reservoirs, has shown that
the plan was effective when the faults had particular locations
and a particular range of fault properties. It appears that the
effectiveness of the plan was largely independent of the
sedimentology.
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